Nutri Førum 23

Feeding additives to replace the use of therapeutic doses of ZnO without rising antibiotic use in post-weaning piglets

Diana Luise, Federico Correa, Paolo Trevisi Department of Agricultural and Food Science (DISTAL), University of Bologna

Structure of the presentation

- Introduction of the EuropeanStateregy to reduce the spread of antibiotic resistance relate to livestocks.
- Role and modes of action of antibiotics and terapeutic ZnO.
- Concept of gut health.
- Feeding additives and nutrients to maintain gut health:
 - Organic acids, short and medium fatty acids
 - Tannins
 - Probiotics
 - Enzymes and vitamins
 - Amino acids

European Livestock production

Following the European strategy, pig production must be economically and environmentally sustainable and at the same time maintain product quality and safety.

Forum

23

Effect of early weaning on piglet health and performance

- Low capacity to absorb fluid
- Age-related expression of specific receptors for bacteria adhesion
- Lack of a complete immune competence

• Social stress

DYSBIOSIS

- Change of diet
- Change of the environment
- Drop of acquired immunity level

Nutri

23

Forum

Evolution of European regulatory framework on antibiotics and zinc

Communication from the Commission to the European Parliament and the Council: Action plan against the rising threats from Antimicrobial Resistance Published 15th September 2011

> COMMISSION NOTICE Guidelines for the prudent use of antimicrobials in **veterinary medicine** (2015/C 299/04) **Published 11th September 2015**

> > June 2017, the European Commission adopted the EU One Health Action Plan against AMR

Withdrawal of the authorization for veterinary products containing Zinc Oxide for oral administration in food producing animals Enter into force from 25th June 2022

> UE Reg2019/6 (11th December 2018) New regulation for the veterinary medicine, abrogation of the EU directive 2001/82/CE Enter into force from 28th January 2022

EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA)

Effects of antimicrobial on gut health and consequences

Effect of antibiotics on gut microbiome of pigs

N. size	4.55	Samples	Antimiershiel close		Effects		Def	
N. Pigs	Age	type	Antimicrobial class	Alpha	Beta	Таха	Nei	
16 pigles	at birth	Faeces	Ceftiofur	=	=	> Enterobacteriaceae, Coriobacteriaceae and Bifidobacteriaceae; < Christensenellaceae and Clostridiales	Ruczizka et al., 2020	The alpha diversity indices
6 pigles	3-19 weeks	Faeces	Tylosin	=	Separationto CO using Unifrac distance	< Fibrobacteres; > Coprococcus at 3 weeks. < Streptococcus and Coprococcus and >Fibrobacter at weeks 9; >Coprococcus and Akkermansia at weeks 19	Holman and Chénier, 2014	are not the main target of the antibiotics
			Chlortetracycline	=	Separation to CO using Unifrac distance	< <i>Lactobcillus</i> > SMB53 at weeks 9		Beta diversity is
12 pigets	12 weeks	ileum and colon	Chlortetracycline, sulfamethazine and penicillin		Separation to CO	Streptococcus; <helicobacter, Turicibacter and Treponema (colon); > Escherichia, Lachnobacterium, Salsuginibacillus spp, Anaeroplasma and Para- prevotella spn_in(colon)</helicobacter, 	Looft et al., 2014a	always affected by antibiotics, nevertheless the type and doses
6 piglets	12 weeks	Faeces	Carbadox (quinoxaline)	< during the fist week but than = to CO	Separation to CO during the fist week, but then =	> Prevotena spp. in(coori) > Prevotella, Roseburia, Faecalibacterium,and Asteroleplasma	Looft et al. 2014b	
24 pregnant sows	-	Faeces	Mixture of: lincomycin, chlortetracycline, and amoxicillin.	-	-	<escherichia and<br="" shigella="">Streptococcus but = after 12 days; > Treponema, Enterococcus, and Staphylococcus populations but = afetr 6 days</escherichia>	Sun et al., 2014	Nutri F⊛rum 23
4 piglets	28 days	Faeces	Chlortetracycline	-	=	=	Poole et al., 2013	∠ J

Mechanisms of action of the pharmacological dose of ZnO

Mechanism of action of the pharmacological dose of ZnO: markers for gut integrity and inflammation

Trevisi et al. Meta-analysis approach on ZnO. Data not published

								P-value	
ITEM	N. studies	LZn	M1Zn	M2Zn	HZn	SEM	Zn level classes	Basal Zn	Reference
ZO-1	3	104.14 ^b	-	-	144.75 ^ª	<mark>4.9</mark> 3	0.01	0.62	0. <mark>4</mark>
OCL	2	103.89	-	-	133.73	12.2	0.06	0.64	0.3
IL-1β	5	94.68	121	1.95	74.8	17.54	0.33	0.7	0.37
TNF-α	6	100.68	-	102.72	113.5	5.76	0.09	0.24	0.49
IFN-γ	6	97.15ª	-	-	77.09 ^b	4.99	0.01	0.29	0.37
TGF-β	4	99.46	100).59	123.43	8.47	0.15	0.08	_

LZn: 0 ppm to 200 ppm; M1Zn:201 ppm to 630 ppm; M2Zn: 631 ppm to 1600 ppm; HZn from 1601 ppm to 3000 ppm

- HZn significantly improved the *ZO-1* and reduced the *IFN-* γ values.
- Pro-inflammatory cytokines, including *IFN-γ* are usually up regulated in the gut of newly weaned pigs; most of them like IFN-γ and IL-1β, have been shown to cause a weakening of the intestinal tight junctions (TJ) and increase gut permeability (Al Sadi et al., 2009).

Nutri

23

Førum

Effect of ZnO on gut microbiota

Effect of feed 3 weeks of zinc oxide at 40 ppm (40ZnO), 110 ppm (110ZnO), 2500 ppm (2500ZnO), or 110 ppm Zn-Lysinate (110ZnLys) on colon microbiome – METAGENOMIC

ZnO 2500 reduce d the microbial diversity and can increase the resistance of bacteria to specific antimicrobials

Effect of ZnO at different level on intestinal bacteria

							P-1	value	
ITEM	N. studies	LZn	M1Zn	M2Zn	HZn	SEM	Zn level classes	Basal Zn	Ref
E. coli, feces	4	100.25	96.68	/	97.01	1.39	0.18	0.20	-
Lactobacillus, feces	4	95.57	103.71	/	94.81	22.76	0.91	0.74	0.23
E. coli, large intestine	5	100.05	103.	.20	92.42	4.11	0.12	0.89	0.25
Lactobacillus, large intestine	4	100.01	99.	78	99.85	2.25	0.98	0.38	0.46
E. coli, small intestine	6	73.72 ^b	/	/	231.88ª	62.39	0.04	0.55	0.20
Lactobacillus, small intestine	6	104.04 ^a	98.7	'4 ^{ab}	81.23 ^b	10.31	0.05	0.63	0.18

LZn: 0 ppm to 200 ppm; M1Zn:201 ppm to 630 ppm; M2Zn: 631ppm to 1600 ppm; HZn from 1601 ppm to 3000 ppm

ZnO has a low solubility in the large intestine due to high pH, which generally leads to no effect on colonic microbiota (*Pieper et al.*, 2012; *Starke et al.*, 2014)

Zn can interact with specific components of the cell membrane structure of the Gram+; therefore it is more effective in reducing the Gram+ than the Gramabundance (*Tayel*, 2011).

Oxidative stress occurs when the production of reactive oxygen species (ROS) such as superoxide is not balanced by antioxidant defence.

- Total glutathione and Oxidized glutathione concentration
- Antioxidative enzyme

The microbiota balance could be defined as the opposite of dysbiosis meaning "a situation in which the microbial population is abundant and diversified with a high abundance of beneficial microorganisms than pathogenic ones"

- Alpha and beta diversity
- An abundance of beneficial or harmful bacteria, viruses and parasites

Capacity to digest, absorb and be functional

- Gut morphometry
- Levels of tight junctions
- Cell proliferation/ cell apoptosis
- Digestive enzyme activity

Immune fitness could be defined as "the ability of the host immune system to respond appropriately to a challenge and to return to or remain in the homeostatic immune state in the absence of a challenge.

- Immunoglobulin concentrations
- Cytokines concentration
- Lymphocytes proliferation

Chalvon-Demersay. 2021. Front. Vet. Sci. 8:663727. doi: 10.3389/fvets.2021.663727

Feed additives and some more...

FEED ADDITIVE

(Regulation 1831/2003/EC)

- Improve the quality of the feed and of the food of animal origin
- Positively affect the performance and welfare of the animals in good health.

FEED MATERIALS

(Regulation (UE) N. 68/2013)

 Include also products that not meet a claim of the regulation 1831/2003 but that can have a role on the animal physiology.

VETERINARY MEDICINES

(Regulation 2019/6, from 28.01.22)

- Treating or preventing disease
- Restoring, correcting, modifying physiological

functions

Organic acids, short and medium fatty acids

Cx	Trivial name	Chemical formula
C1	Formic	НСООН
C2	Acetic	CH3COOH
C3	Propionic	CH2CH2COOH
C4	Butyric	CH2CH2CH2COOH
C5	Valeric	CH2CH2CH2CH2COOH
C6	Caproic	CH2CH2CH2CH2CH2COOH
C7	Enanthic	CH2CH2CH2CH2CH2CH2COOH
C8	Caprylic	CH3CH2CH2CH2CH2CH2CH2COOH
C9	Pelargonic	CH ₂ COOH
C10	Capric	CH3CH2CH2CH2CH2CH2CH2CH2CH2COOH
C11	Undecylic	CH ₂
C12	Lauric	CH ₂

Short

Medium

Organic acids

At weaning, physiological immaturity of the gastric mucosa (fundus) \Box low HCl secretion by parietal cells

Organic acids: Formic acid and its salts

Considering formic acid, a dose of **8000–10000 mg/kg** of feed for improving the health and performance of weaning pigs (*Luise et al.* 2020).

The effect of formic acid and its salts on microbiome seems to be more consistent in the large intestine, while in the small intestine, results are varying accordingly to their doses and forms.

A .: 4:C 1	Inclusion	Initial Body				Chai C	nges in Colony-	Microl Formin	oial Co 1g Unit	unts, less (CFU	og10)				Poferoncor
Acidiner	Diet	Weight (BW)	S Total	tomacl LAC	n COLI	Sma Total	ll Intes LAC	tine COLI	Larg Total	e Intes LAC	tine COLI	Total	LAC	Feces COLI	Kererences
	6	6					Î	↑		Ļ	Ļ				[66]
	12	6					Ţ	Ţ		L	Ţ				[66]
	18	6					Ţ	Ť		1	i				[66]
Formic acid	24	6					i.	i.		Ĩ.	i				[66]
	7						Ĩ.	Ĩ.							[53]
	14			-	1		Ĩ.	Ĩ.							[53]
Ca-formate	18	7.5					Ť	Ť		Ť	1				[67]
Na-diformate	18	5.7					i	i		i.	ĩ				[68]
	18		1	T	-		i.	2	1	Ĩ.	2				[69]
K-diformiate	18	8		•	1	•	-	1							[70]
	5	7.8			•			•					Ť	T	[71]
Formic + Lactic acid	1 0+ 10	8.4	ţ	Ļ	Ļ										[72]
Blend 1	4	6.7				1.	1		2	L.					[73]
Blend 2	11	4.9				v	-	Ŷ		Ĩ	Ť				[74]
Blend 3	21	4.9					-	Ŷ		Ĩ	Ť				[74]
Blend_4	3									¥			2	\downarrow	[7]

¹ Blend_1: 35% formic acid + 35% lactic acid + 20% citric acid + 10% sorbic acid; Blend_2: 23.1% formic acid + 13.3% lactic acid + 12.4% acetic acid + 0.76 phosphoric acid + 0.76 citric acid; Blend_3: 51.7% lactic acid + 29.0% formic acid + 17.0% acetic acid + 16.0% phosphoric acid + 0.85% citric acid; Blend_4: commercial blend of free and buffered short chain fatty acids (mainly formic acid, acetic acid and propionic acid) combined with MCFA.

C: control group, fed a standard weaning pigs; F: C+ 1.2% of free calcium formate; P: C+ 1.2% of fat-protected calcium formate

The reduction in the number of parietal cells could impair the absorption of vitamin B-12 due to a reduced secretion of the intrinsic factor by these cells

Bosi et al. 2006. J. Nutr. 136: 1229–1235

Luise et al., Animals. 2020;10.

Organic acids: Benzoic acid

Effect of 5000 mg/kg benzoic acid on nursery pigs (18 kg) after 14 days of supplementation

American Constraint Co

Effect of benzoic acid on pH and enzymatic activity in jejunum mucosa

Items	Control	Benzoic acid	SEM	P-value
pH	6.2	5.7	0.11	0.064
Trypsin,U•10 ³ /mg protein	45.3 ^b	48.2 ^a	0.64	0.039
Lipase, U-10 ³ /g protein	2.7 ^b	2.9 ^a	0.32	0.028
Amylase,U/mg protein	309.1 ^b	401.9 ^a	15.81	0.030

5000 mg/kg benzoic acid

- improve the nutrient digestion

- Improve gut morphology
- Increasing the antioxidant capacity

Effect of benzoic acid on gut oxidation in jeunum

Items	Control	Benzoic acid	SEM	P-value
Superoxide Dismutase,U/mL	29.07 ^b	70.43 ^a	5.73	0.011
Glutathione peroxidase,U/mg	83.08 ^b	345.97 ^a	22.88	0.049
Malondialdehyde,µmol/L	1.71	1.52	0.09	0.322

Diao et al. Journal of Animal Science and Biotechnology (2016) 7:32

Organic acids: Coated sodium-butyrate

Coated Sodium Butyrate on jejunum morphology 42 days post-weaning

Items, µM	CON	Coated sodiu	m butyrate		SEM ^b	P-value	
		Low	Medium	High		Linear	Quadratic
Duodenum	340.8	341.9	348.3	364.0	6.14	0.021	0.266
Jejunum	306.8	353.6	363.0	354.1	11.99	0.019	0.045
Ileum	303.7	360.3	363.0	352.3	11.28	0.016	0.015

Low: 0.5 g/ton SB; Medium: 1.5 g/ton SB and after 3 weeks 0,75 g/ton SB; High: 3 g/ton SB and after 3 weeks 1,5 g/ton SB

Nutri

23

Førum

- improve gut morphology
- Improve gut barrier function and reduce the gut permeability
- Increasing the antioxidant capacity

NC= Control; ASB= NC + 50 mg kitasamycin/kg, 20 mg colistin sulfate/kg, and 1000 mg encapsulated SB/kg; PC= NC+ 100 mg kitasamycin/kg and 40 mg colistin sulfate/kg [positive control]

Blends of short and medium chain fatty acids

SCFA and MCFA are usually mixed in blends together and/or with other additives to improve their activities following the approach called «multi-hurdled» proposed in humans (Rostami et al., 2016)

CTR1	AGP	OA1	OA2	P value	F	REF	
295ab	281b	314ab	332a	0.03			AGP=CTR + 10 mg/kg zinc bacitracin, 5 mg/kg collstin sulphate and 5 mg/kg olaquindov:
502	478	476	488	0.48			5 mg/kg olaquindox,
3.58a	1.59b	0.60b	0.40b	<0.01	Longe	tal 2018	OA1= synergistic blend of free and buffered short chain fatty
0.57b	0.65ab	0.97a	0.70ab	0.05	Longer	<i>a</i> ., 2010	acids (mainly formic acid, acetic acid and propionic acid) combined
4.50a	2.60b	2 366	2 876	0.04			with MCFA:
2.88b	4.40a	5.00a	4.96a	<0.01			OA2= synergistic blend of a <u>phenolic compound</u> , slow release C12,
1.33b	1.76a	2.10a	2.03a	<0.01			target release butyrate and sorbic acid, MCFA and OA
0.70b	1.26a	1.21a	1.32a	<0.01			Depositive control, basal diet, challenge with <i>E. coli</i> K88;
NC	PC	AGPs	OAMF1	OAMF2	P value	REF	AGP- antibiotic growth promotor challonged:
163 a	164 a	181 b	182 b	177 ab	0.034		
45	356	378	375	360	0.594		OAMF1= a synergistic <u>fat-coated blend of a phenolic compound.</u>
1.96 a	1.93 a	1.46 d	1.60 C	1.7 I D	< 0.001	Han at al	slow release C12 (ester of lauric acid), targeted release butyrate,
2.25 a	2.35 ab	2.37 bc	2.42 C	2.32 ab	0.009	2020	MCFAs (caproic, caprylic, capric, and lauric acid) and sorbic acid;
18.91 a	18.56 a	19.44 a	21.04 b	21.44 b	< 0.001	2020	• OAME2-blond of buffored short chain fatty acids (formic acid
0.30a	0.57a	1.06b	0.46a	0.54a	0.038		ammonium formate, acetic acid, propionic acid, butvric acid,
0.22	0.22	0.56	0.16	0.21	0.055		lactic acid, citric acid, and sorbic acid) combined with MCFAs.
	CTR1 295ab 502 3.58a 0.57b 4.50a 2.88b 1.33b 0.70b NC 163 a 45 1.96 a 2.25 a 18.91 a 0.30a 0.22	CTR1 AGP 295ab 281b 502 478 3.58a 1.59b 0.57b 0.65ab 4.50a 2.60b 2.88b 4.40a 1.33b 1.76a 0.70b 1.26a NC PC 163 a 164 a 45 356 1.96 a 1.93 a 2.25 a 2.35 ab 18.91 a 18.56 a 0.30a 0.57a 0.22 0.22	CTR1 AGP OA1 295ab 281b 314ab 502 478 476 3.58a 1.59b 0.60b 0.57b 0.65ab 0.97a 4.50a 2.60b 2.36b 2.88b 4.40a 5.00a 1.33b 1.76a 2.10a 0.70b 1.26a 1.21a NC PC AGPs 163 a 164 a 181 b 45 356 378 1.96 a 1.93 a 1.46 d 2.25 a 2.35 ab 2.37 bc 18.91 a 18.56 a 19.44 a 0.30a 0.57a 1.06b 0.22 0.22 0.56	CTR1 AGP OA1 OA2 295ab 281b 314ab 332a 502 478 476 488 3.58a 1.59b 0.60b 0.40b 0.57b 0.65ab 0.97a 0.70ab 4.50a 2.60b 2.36b 2.87b 2.88b 4.40a 5.00a 4.96a 1.33b 1.76a 2.10a 2.03a 0.70b 1.26a 1.21a 1.32a NC PC AGPs OAMF1 163 a 164 a 181 b 182 b 45 356 378 375 1.96 a 1.93 a 1.46 d 1.60 c 2.25 a 2.35 ab 2.37 bc 2.42 c 18.91 a 18.56 a 19.44 a 21.04 b 0.30a 0.57a 1.06b 0.46a 0.22 0.22 0.56 0.16	CTR1AGPOA1OA2P value295ab281b314ab332a0.03 502 4784764880.483.58a1.59b0.60b0.40b<0.01	CTR1 AGP OA1 OA2 P value P value 295ab 281b 314ab 332a 0.03	CTR1 AGP OA1 OA2 P value REF 295ab 281b 314ab 332a 0.03

Tannins

Tannins

Tannins are a heterogeneous group of astringent polyphenolic biomolecules that can interact with and precipitate macromolecules, such as proteins, gelatins, polysaccharides and alkaloids.

Tannins are widely distributed in plant: -forages, shrubs, cereals and medicinal herbs - fruit species such as banana, blackberry, apple and grape as well as tea

Tannins antimicrobial effects - in vitro

Plant source	Plant part	Tannins (CTs or HTs)	Tannin or metabolite type	In vitro and/ or in vivo	Bacteria	Reference
Pomegranate (Punica granatum L.)	Fruit peel	HTs	Ellagitannins (punicalagin) Ellagic acid (metabolite)	In vitro	Food-borne pathogens: Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Yersinia enterocolitica	Al-Zoreky (2009)
Chestnut (<i>Castanea</i> <i>sativa</i>)	Wood	HTs	Gallotannins Ellagitannins	In vitro	Poultry pathogens: Campylobacter jejuni, Clostridium perfringens type A, Escherichia coli, Pasteurella multocida, Salmonella enteritidis, Salmonella gallinarum, Salmonella typhimurium, Salmonella virchow, Staphylococcus aureus	Graziani <i>et al.</i> (2006)
Japanese rose (<i>Rosa</i> <i>rugosa</i>)	Petals	HTs	Ellagitannins (tellimagrandin II, rugosin A and D)	In vitro	Intestinal bacteria: Bacillus cereus, Escherichia coli, Salmonella sp., Staphylococcus aureus	Kamijo <i>et al.</i> (2008)
Chestnut (Castanea sativa)	Not specified	HTs	Gallotannins Ellagitannins	In vitro/ in vivo	Escherichia coli 0157 : H7 (in vitro) and generic fecal Escherichia coli (in vivo)	Min <i>et al.</i> (2007)
Mimosa (Acacia meamsii)	Not specified	CTs	Procyanidins Prodelphinidins Prorobinetinidins			
Sumac (Rhus copallina)	Leaves	CTs: HTs (17%: 83%)	Gallotannins Ellagitannins	In vitro	Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus	Min et al. (2008)
Shinnery oak (Quercus havardii)	Leaves	CTs : HTs (29% : 71%)	Catechin (flavan-3-ol) Gallotannins Ellagitannins		nga nga 🖌 ng kalan ng ngang Soorta.	
Quebracho extract (<i>Schinopsis</i> spp.)	Not specified	CTs : HTs (98.5% : 1.5%)	Profisetinidins Prorobinetinidins			
Japanese chestnut (Castanea crenata)	Wood	HTs	Castalagin	In vitro	Escherichia coli (non-pathogenic E. coli, enterohemorrhagic E. coli, enteroinvasive E. coli, enterotoxigenic E.coli), Salmonella, Staphylococcus	Taguri <i>et al.</i> (2004)
Woodland elaeocarpus (Elaeocarpus	Bark	CTs	Prodelphinidins		aureus	

inhibition c cellular mi enzym	of extra- crobial nes	deprivatio substrates for mic grov	on of the required robial vth	inhib oxio phosph	ition of dative norylation
	depriva metal	tion of ions	format complex cell mer	ion of with the mbrane	
Aggre incub conde	egation of <i>E</i> ated for 10 ensed tanni	<i>scherichia co</i> h with Contr ns of purple	li (strain 259 ol or 200 mg prairie clove	22) cell g/mL of r	<mark>Nutri</mark> F⊛rum

condensed tannins of purple prairie clover (Dalea purpurea Vent.). Huang et al., 2018, Animal Nutrition, 4, 137-150.

23

Tannins: in vivo effects

Effect of 21 days feeding with 1.8% of tannin extract (from Galla chinensis :effective content of tannic acid was 70.38%) on the cecal microbiota, gut morphology and blood oxidative stress parameters – comparison with 1500 ppm of ZnO

and the second se

nclassified g Streptococcus	
nclassified g Alloprevotella	
nclassified g Prevotella 2	
nclassified g Prevotella 7	
nclassified g Coprococcus 3	
ubacterium coprostanoligenes	
nclassified g Ruminococcaceae UCG-005	
orphyromonadaceae bacterium DJF B175	
ncultured bacterium g norank f Prevotellaceae	
nclassified g Ruminococcaceae UCG-014	
ncultured_bacterium_gRikenellaceae_RC9_gut_group	
UMINOCOCCUS_SD_5_1_39BEAA	
nclassified g Lachnospiraceae NK4A136 group	
nclassified g Blautia	
nclassified_o_Bacteroidales	
nclassified_gTerrisporobacter	100
nclassified_g_Prevotellaceae_NK3B31_group	3.5 -
ncultured_bacterium_g_Prevotella_1	
ncultured_bacterium_g_norank_f_Bacteroidales_S24-7_g	roup
nclassified_g_[Eubacterium]_coprostanoligenes_group	
ncultured_bacterium_gPrevotellaceae_UCG-003	3.0 -
ncultured_bacterium_g_Prevotellaceae_NK3B31_group	
ncultured_bacterium_gSubdoligranulum	
nclassified_g_[Eubacterium]_rectale_group	
nclassified_f_Lachnospiraceae	25
ncultured_bacterium_gPrevotella_9	2.5
nclassified_gPhascolarctobacterium	
nclassified_g_Faecalibacterium	
ncultured_bacterium_gClostridium_sensu_stricto_1	5/59
ncultured_bacterium_gAlloprevotella	2.0 -

Item	CON	GCT	SEM	p Value
Villus height (um)	000-120-040		2015-0-00-0-0-	100000000
Duodenum	454.25	401.02	15.63	0.088
Jejunum	422.44	410.70	16.99	0.747
Ileum	384.67	399.66	14.95	0.639
Crypt depth (um)				
Duodenum	142.70	148.20	2.90	0.367
Jejunum	159.04	150.06	4.02	0.284
Ileum	144.69	128.25	4.08	0.036
D-lac	1288	1106	36.29	0.004

CON: ZnO diet; GCT: Hydrolyzed Chinese gallnut tannic acid diet; D-lac: D-lactic acid; SEM: Standard error of the mean.

Item	CON	GCT	SEM	p Value
GSH (mg/mL)	5.57	6.43	0.19	0.012
MDA (nmol/mL)	4.15	3.58	0.14	0.032
SOD (U/mL)	97.16	105.47	2.06	0.036

CON: ZnO diet; GCT: Hydrolyzed Chinese gallnut tannic acid diet; GSH: Glutathione; MDA: Malondialdehyde; SOD: Superoxide dismutase.

Tannin extract:

- ✔ Favour the colonisation of the gut intestine with beneficial bacteria
- ✓ improve the barrier integrity and reduce the oxidative stress in piglets

Sun et al. Animals. 2021;11.

Tannins: In vivo effects

Effect of feeding from 28 days 1% of tannin extract from chestnut wood and contained ≥75% tannin, crude fiber <8.00%

Table 5.	Effects of HT and ZnO individual supplementation or combination on serum antioxidant	
capacity	of weaned piglets.	

Item ¹	CON ²	ZnO ²	HT ²	HT + ZnO ²	SEM ³	p-Value
		I	Duodenum	8		
T-AOC (U/mg)	6.90 b	8.72 ab	8.90 ab	10.70 a	0.55	< 0.01
CAT (U/mg)	3.67	4.17	5.02	5.51	0.42	0.05
GSH-Px (U/mg)	78.98 b	83.04 b	89.06 ab	116.72 a	6.57	0.01
SOD (U/mg)	6.41 b	6.39 ^b	7.80 ª	8.48 a	0.29	< 0.01
MDA (nmol/mg)	0.61 ª	0.57 ab	0.55 ab	0.46 b	0.03	0.05
			Jejunum			
T-AOC (U/mg)	8.62	8.12	7.11	7.20	0.23	0.22
CAT (U/mg)	2.66	2.35	2.87	2.90	3.53	0.37
GSH-Px (U/mg)	61.56	47.58	51.38	63.64	0.21	0.07
SOD (U/mg)	6.12	5.70	6.16	6.42	0.55	0.17
MDA (nmol/mg)	0.66	0.79	0.74	0.70	0.03	0.07
			Ileum			
T-AOC (U/mg)	8.18	8.54	8.51	6.54	0.81	0.29
CAT (U/mg)	4.16	4.49	4.49	4.28	0.42	0.82
GSH-Px (U/mg)	77.71 ab	69.71 b	94.13 a	79.30 ab	4.66	0.03
SOD (U/mg)	7.37	6.80	7.57	6.87	0.38	0.43
MDA (nmol/mg)	0.58 ab	0.63 a	0.53 b	0.59 ab	0.02	0.03
			Liver			
CAT (U/mg)	5.21 b	7.17 a	6.04 ab	5.49 b	0.27	< 0.01
GSH-Px (U/mg)	71.56	87.26	86.16	77.79	6.19	0.32
SOD (U/mg)	7.06 b	9.09 a	8.60 ab	8.01 ab	0.36	0.03
MDA (nmol/mg)	0.62	0.56	0.57	0.59	0.02	0.36

CON= control; ZnO= CON + 2000 mg/kg ZnO in phase 1 and 137.5 mg/kg ZnO in phase 2; HT= CON + 1000 mg/kg HT in all phase; HT+ ZnO=CON + 2000 mg/kg ZnO + 1000 mg/kg HT in phase 1, and 137.5 mg/kg ZnO + 1000 mg/kg HT in phase 2 (HT + ZnO.

Table 4. Effect of HT and ZnO individual supplementation or combination on serum antioxidant and immune indexes of weaned pigs.

Item ¹	CON ²	ZnO ²	HT ²	HT + ZnO ²	SEM ³	p-Value
			d 14			
CAT(U/mL)	24.36 c	29.18 bc	33.19 ^b	47.96 a	1.17	< 0.01
GSH-Px (U/mL)	684 c	855 b	919 ^b	1049 a	24.80	< 0.01
SOD (U/mL)	71.72 ab	66.14 ab	64.16 ^b	73.95 a	2.21	0.03
T-AOC (U/mL)	13.31 ab	12.80 ab	12.78 ^b	15.90 ^a	0.97	0.02
MDA (nmol/mL)	5.48 ª	4.84 ab	4.63 ^b	2.71 °	0.20	< 0.01
IgA (g/L)	1.16 b	1.38 ab	1.42 ab	1.60 a	0.09	0.03
IgM (g/L)	3.13 °	3.38 bc	3.48 b	3.96 a	0.06	< 0.01
IgG (g/L)	20.67	21.25	21.56	23.11	0.62	0.08

- ✓ HT may alleviate the oxidative stress by enhancing the antioxidant enzyme activities in serum and small intestine, which was reflected by improved **GSH-Px** activities and reduce **MDA** in the serum and ileum.
- The possible reason is that HT can selectively induce the expression of antioxidant enzymes via modulating redox-sensitive signalling pathways by inhibiting lipid peroxidation and quenching the oxygen free radicals in the gut Nutri

Førum

Seems there is a synergistic effect between ZnO and HT

Tannins: In vivo effects

Girard et al., 2020 Plos one, 15(2), e0214267

post-challenged with ETEC.

Source/type	Animals/	Dose of tannin	Zootechnical performances	References	
/feeding	duration (day)				
			= BW, ADG, ADFI, FCR with 0.11%, 0.23%;		
Chestnut/HTs/ad libitum	12/28	Control, 0.11% HTs, 0.23% HTs, 0.45% HTs	= BW, ADFI with 0.45%;	<u>Biagi et al. (2010)</u>	
			↑ ADG and FCR with 0.45%		
Chestnut/HTs/ad	Chestnut/HTs/ad		↑ BW, ADG at 82 and 127 days;		
libitum	libitum 168/104	0.19% HTs + 0.16% 5 acids	↑ FCR at 82–127 days	Brus et al. (2013b)	
Chestnut/HTs/restri cted	8/14	Control, 0.075% HTs, 0.15% HTs, 0.3% HTs, Vit. E	= BW, ADG, ADFI, FCR	<u>Frankič and Salobir</u> <u>(2011)</u>	
Chestnut and Quebracho/HTs/CT s/ad libitum	18/14	Control infected; control not infected; 1% HTs/CTs infected; 1% HTs/CTs not infected	= BW, ADG, ADFI, FCR	<u>Girard et al. (2018)</u>	
Chestnut and	25/44	Control without SA; 2%	↑ BW at 7 days;	Girard and Bee	
s/ad libitum	30/14	SA + 2% HTs/CTs	↑ ADG, ADFI	<u>(2020)</u>	

- ✔ Doses of 2% HTs/CTs may result in improved daily feed intake and average body gain
- ✔ Doses under 1% HTs/CTs seem not to affect animals' growth performance
- ✔ Synergistic effect of lower dosage with organic acids have been observed by Brus et al. 2013

Nutri

23

Forum

Tannins

However, tannins' beneficial effects depend primarily on their type and dose in the media or the diet.

Indeed, an excess of tannins in the diet could lead to an antinutritional effect, especially on proteins.

Further investigations are needed to determine the optimal combinations of tannins and the most suitable and cost-effective manner to deliver them.

Probiotics

Genus	Strain
Pediococcus	Pediococcus acidilactic
Enterococcus	Enterococcus faecium
Saccharomyces	Saccharomyces cerevisiae
Bacillus	Bacillus amyloliquefaciens
	Bacillus licheniformis
	Bacillus subtilis
	Bacillus <u>velezensis</u>
	Bacillus <u>coagulans</u>
Clostridium	Clostridium butyricum

Probiotics

Numebr or articles, NCBI "probiotic" "pig"

Hou et al. Journal of Animal Science and Biotechnology (2015) 6:14 DOI 10.1186/s40104-015-0014-3 JOURNAL OF ANIMAL SCIEN AND BIOTECHNOLOGY

Open Access

REVIEW

Review article

Study and use of the probiotic *Lactobacillus reuteri* in pigs: a review

Chengli Hou, Xiangfang Zeng, Fengjuan Yang, Hong Liu and Shiyan Qiao*

Livestock Science 223 (2019) 84-96

Contents lists available at ScienceDirect
Livestock Science
EVIER journel homepage: www.elsevier.com/locate/liveci

Practical aspects of the use of probiotics in pig production: A review

¹Animal Markine and Weffere Service, Department de Clienie Animal i dels Alimens, Enforcient ad Animal and Poultry Science, Enimersity of Stokanineson, S7N SA8 Saekutchenen, Canada

Emili Barba-Vidala, Susana M. Martín-Orúea, Lorena Castillejos

	2
	LIVESTO
	- Constantion
sci	* frontiono

dok	

۲

Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens

Pathogens 2015, 4, 34-45; doi:10.3390/pathogens4010034

pathogens

ISSN 2076-0817 www.mdpi.com/journal/pathogens

Review

The Use of Lactic Acid Bacteria as a Probiotic in Swine Diets

Fengjuan Yang, Chengli Hou, Xiangfang Zeng and Shiyan Qiao *

Beneficial Microbes, 2019; 10(7): 773-799

Could probiotics be the panacea alternative to the use of antimicrobials in livestock

diets?

A. Cameron^{1,2} and T.A. McAllister^{2*}

Probiotics

Genus	Strain
Pediococcus	Pediococcus acidilactic
Enterococcus	Enterococcus faecium
Saccharomyces	Saccharomyces cerevisiae
Bacillus	Bacillus amyloliquefaciens
	Bacillus licheniformis
	Bacillus subtilis
	Bacillus velezensis
	Bacillus coagulans
Clostridium	Clostridium butyricum

European Union Register of Feed Additives pursuant to Regulation (EC) No 1831/2003. Edition 03/2021 (291)

Nutri Forum 23

Probiotics – suckling phase, multiple doses

Directly supplemented to the neonate piglets : every other day from d1 of age until d28 (weaning), two doses *Saccharomyces cerevisiae*, 5 x 10⁹ or 2.5 x 10¹⁰ CFU/piglet (*Kiros et al.*, 2019)

The supplementation of Saccharomyces cerevisiae **increased the ADG** of piglets, **reduced the alpha diversity** indices and selected specific bacteria including SCFAs producing bacteria

Probiotics – suckling phase, single doses

Nutri

Førum

One shot on the day of birth only: orally inoculated 4mL containing: pure water (CO); 10¹⁰ CFU Saccharomyces cerevisiae boulardii (SA); 10¹⁰ CFU Enterococcus faecium lactiferm (SA); both (SAEF)

Effect on faecal microbiota

Value.var	Freq	PC	Genus	Direction
0.394	0.86	1	Prevotellaceae_UCG-004	CO
-0.360	0.93	1	Christensenella	SA
0.345	0.68	1	Romboutsia	SAEF
0.321	0.6	1	Ruminococcaceae_UCG-010	SAEF
-0.316	0.82	1	Catenibacterium	SA
0.249	0.72	1	Erysipelotrichaceae_UCG-004	SAEF
0.520	0.73	2	Lachnospiraceae_UCG-010	EF
-0.471	0.55	2	Erysipelatoclostridium	SA
0.289	0.46	2	Negativicoccus	EF
-0.282	0.51	2	Methanobrevibacter	SA
0.257	0.64	2	Lachnospiraceae_UCG-004	EF
-0.237	0.48	2	Lachnospiraceae_UCG-002	SA

These results highlighted that the administration of a single early-life probiotic supplement could improve piglet performance and shape the faecal microbial profile.

The two probiotic favoured different bacteria profile; suggesting that there was not a univocal stimulation of the microbiota for growth promotion.

Luise et al., 2021; Italian Journal of Animal Science, 20:1, 1372-1385,

Probiotics – weaning phase

Enriched gene sets in Bacillus groups compared with a CO (FDR <0,25)

9 Gene sets of intersection AB|BAA|BAS

- LEUKOCYTE_ACTIVATION
- T_CELL_ACTIVATION
- LYMPHOCYTE_DIFFERENTIATION
- B_CELL_ACTIVATION
- T_CELL_DIFFERENTIATION
- CELL_STRUCTURE_DISASSEMBLY_DURING_APOPTOSIS
- DETECTION_OF_EXTERNAL_STIMULUS
- DETECTION_OF_STIMULUS

Mitotic index, d21 post-weaning P = 0.01

BAA: Bacillus Amyloliquefaciens; BAS: Bacillus subtilis; AB: colistin

Probiotics – weaning phase

Cis president Certorectory C

Bacillus strains reduced the **diarrhoea indices** (%) by at **least 30%** to values ranging from 79 to 82% (*Ji et al.*, 2013; *Pu et al.*, 2018) as compared with the untreated control groups.

Furthermore, the **reduction** in the **incidence of diarrhea**% achieved using Bacillus strains was **equal** (*Hu et al.*, 2014; *Pan et al.*, 2017; *Xu J. et al.*, 2017) **or greater** (*Pu et al.*, 2018) than the diarrhea% achieved using **antibiotics**.

Luise et al., (2022). Frontiers in Microbiology, 13, 177.

«Probiotics»

Effect of live oral vaccine against ETEC F4/F18 administered one time the day of the weaning on the gut health, in healthy piglets

d10 post-weaning P < 0.0001 P < 0.012 100% 100% 90% 90% 80% 80% 70% 70% 60% 60% 50% 50% 40% 40% 30% 30% 20% 20% 10% 10% 0% 0% co TRT co 1 2 3 1 2 3

Claudin-4 score

d35 post-weaning

TRT

Jejunal immunohistochemistry scoring for Claudin-4 of post-weaning piglets orally vaccinated with Coliprotec F4/F18. (Correa et al., 2022, Animal, 100654)

Due to its role in the small intestine, claudin-4 can be considered a good marker for barrier function and mucosal integrity. The higher score observed in the vaccinated group suggested a positive influence of the vaccine on barrier function and mucosal integrity in the jejunum of the piglets. Indeed, Claudin-4 expression and score decrease with inflammation (Ciro Galeano et al., 2015; Curry et al., 2017).

«Probiotics»

Effect of live oral vaccine against ETEC F4/F18 administered one time the day of the weaning on the gut health, in healthy piglets

The two vaccine strains showed a probiotic-like effect by modulating gut microbiota and favouring the establishment of beneficial bacteria, and by promoting gut barrier integrity.

2		sPL	SDA d38	i co	mp 1 - 2
	Avantate 2 10% expl var	4 A 4	A A A A A A A A A A A A A A A A A A A	4	B CO C CO C CO C CO C CO C CO C CO C CO
	-10-	* ,	Cvariate 1: 1	0	gk var
	CO	0.13	0.54	1	Rikenellaceae RC9
	со	0.17	0.61	1	Lachnospiraceae XPB1014 group
	co	0.31	0.82	1	Monoglobus
	CO	0.45	0.96	1	Family XIII UCG-001
	со	0.10	0.51	1	[Eubacterium] nodatum group
	со	0.28	0.81	1	Sutterella
	TRT	-0.23	0.70	1	[Eubacterium] ruminantium group
	TRT	-0.19	0.65	1	Acetitomaculum
	TRT	-0.16	0.61	1	Alloprevotella
	TRT	-0.13	0.57	1	[Bacteroides] pectinophilus group
	TRT	-0.52	0.97	1	CAG-56
	TRT	-0.16	0.61	1	Mitsuokella
	TRT	-0.35	0.83	1	Subdoligranulum

D

Nutri Førum

23

(Correa et al., 2022, Animal, 100654)

Enzymes and vitamins

Enzymes

- ✓ Enhance the endogenous enzymatic activity
- ✔ To compensate for any insufficiency and / or immaturity of the digestive system of young animals
- Degrading indigestible substrates of the vegetable raw material (phytates, non-starch polysaccharides, cellulose) for which animals does not secrete specific enzymes
- ✔ Reduce viscosity along the GIT
- ✔ Eubiotic effect

Enzymes tested	Doses in diets	Main substrateingredients	Duration (days)	Control	End-points ^{a b}						Reference		
					GP		ND	FT/D	GA	IS	GM	AS	
Xylanase	2000 U/kg	Wheat		0.07	+		+				П		Walsh et al. (2014)
Amylase Protease Xylanase	100 – 350 mg EME/kg ¹	Corn-soybean	14 (digestibility) 30 (feeding exp)	NC	+		+				+		Zhang et al. (2014)
Protease	200 mg/Kg	Corn-soy	42	NC	+		+	_			-		Tactacan et al. (2016)
Xylanase	0.05 - 0.1 g/kg	Corn-soybean	42	NC	+		+	+			+		Lan et al. (2017b)
Protease	300,000 U/kg	Corn or sorghum	40	NC	+		+		+		100		Chen et al. (2017)
Xylanase	500 - 4000 U/kg	Wheat	28	NC	+		+				+		Dong et al. (2018)
Acid protease	1000 - 3000 U/kg	Corn-soybean	35	AB	ns		+					+	Han et al. (2017)
α-amylase	75 - 225 U/kg	the second state and the second											
Xylanase	3500 - 5250 U/Kg												
β-mannanase	175 - 525 U/kg												
Glucose oxidase	60 - 180 U/kg												
Acid cellulose	60 - 180 U/kg												
Galactosidase	50 - 150 U/kg												
Bromelain	0.5 - 2 g/kg (given to sow)	Corn-soybean	28 (from 108 d gestation)	NC	+	I	s			+			Begum et al. (2015)

GP, Growth promoter; ND, Nutrient digestibility; FT/D, faecal traits/reduction of diarrhoea episodes; GA/IS, Modulation gut architecture/promote immune response; GM, Gut microbiota modulator; FG, fermentation products in the gut

Lopez-Galvez et al. 2021. Animal Feed Science and Technology 271: 114727

Vitamins

- Beyond their role as essential micronutrients, vitamins share several remarkable activities (antimicrobial, immunological and antioxidative).
- Vitamins can sustain gut health during the post-weaning through different mechanism.

Adapted from *Lauridsen et al* (2021). *Animal Feed Science and Technology*, 273, 114823.

Mechanism	Vitamin (or bioactive forms)	Impact				
Inhibition of inflammation	B-vitamins, vitamin E	Inflamed gut appears to provide a favorable environment for ETEC				
Control of oxidative stress	Vitamins with antioxidative activity	Prevention of excessive production of reactive oxygen species during an host-inflammatory induced response, and hence prevention of enteric infection.				
Improvement of effective immune cell activity and response, and immune cell homeostasis	Vitamins E, C, A, D and B-complex	Formation of immune cells and their signals and modulation of immune cell responses.				
Improvement of intestinal barrier function	Vitamins D and A	Regulation of tight junction molecules and hence prevention of barrier damage				
Regulation and modulation of innate and adaptive immunity	Vitamins A and D	Gut homing, immune cell differentiation and cytokine suppression are important host responses to injury and infection and resolution of inflammation.				
Production antimicrobial peptides	Vitamins A and D	Enhanced innate immunity and shaping of commensal microbiota				
Shaping the microbiome	Thiamin, riboflavin, and vitamins A, B-6, B-12, C, D, E and K	Regeneration of commensal microbiota				

Vitamin A

NC = basal diet without external Vitamin A; EQ VA = basal diet supplemented with 12 000 IU/kg Vitamin A with ethoxyquin; VC sodium VA = basal diet supplemented with 12 000 IU/kg Vitamin A with L-ascorbic acid Zhou, H. B., et al. Animal 15.2 (2021): 100133.

23

Nutri

Forum

Vitamin D

vitamin D3 could alleviate intestinal damage and protect against PEDV-induced inflammatory

status.

vitamin D3 increased of leukocyte numbers and increased their

phagocytic capacity in weaned pigs

Yang, J. et al., (2019). Animals, 9(9), 627.

Konowalchuk et al. (2013). Veterinary Immunology and Immunopathology, 155(1-2), 57-66.

Vitamin E

Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs

Selenium and VE participate synergistically in neutralizing free radical

Amino acids

Amino Acids

Especially glutamine, glutamate, arginine, aspartate and cysteine, have been shown to cover three out of the four pillars, namely the gut function, antioxidant and immune mediators.

TABLE 1 | Amino acids influencing the indicators related to the 4 pillars of gut health in piglets.

Pillars	Epithelial barrier and digestion			Immune fitness			Oxidative	Microbiota balance					
Indicators of gut health	 Villus height Tight junctions Goblet cells and mucins Diarrhea Permeability Golgestive enzymes activity Transporters Cell proliferation 		rhea neability apoptosis	Immunoglobulins S Pro- Anti-inflammatory inflammato cytokines cytokines S Lympho proliferatio			☐ Total] Malondialdehyde] Oxidized lutathione		sity E ficial (E acillus, b cterium) (E C	 Parasites (Eimeria) Harmful bacteria (Enterobacteria Clostridium, Campylobacter 	
Effect of amino acids	Support	Support and restore	Restore	Support	Support and restore	Restore	Support	Support and restore	Restore	Support	Suppor and resto	t Restore pre	
Asparagine	(56)	(57)		(56)									
Aspartate		(58)		(59, 60)				(61)		(59)			
Arginine	(62-67)	(68)	(69)	(62, 64)	(68)		(62, 65, 70, 71)						
Cysteine	(72)	(73)		(72)	(73)		(72)						
Glutamate or monosodium Glutamate	(67, 74-77)	(78)	(61)	(79)	<mark>(</mark> 75, 78)		(77)	(78)	(61)				
Glutamine	(62, 80-89)	(90-93)	(94)	(62, 88)	(92, 93, 95)	(94, 96)	(88, 97)	(92)					
Isoleucine	(98)	(99)			(99, 100)								
Leucine		(101)											
Lysine	(102)	(103)								(102)			
Methionine	(104, 105)						(105)						
Proline	(106)												
Serine	(107)			(107)			(107)						
Threonine	(108, 109)			(110)									
Tryptophan	(111)	(42, 112-114)		(111)	(113, 115)		(116)	(114)					

☑, increased in response to AA supplementation; ☑, decreased in response to AA supplementation.

Chalvon-Demersay, et al. (2021). Frontiers in Veterinary Science, 8, 663727.

Glutamate and glutamine

Glutamate (Glu)

Glutamine (Gln)

Energy

Good fuel for enterocytes

Provides energy to the immune cells in the gut

Precursor of glucosamine (involved in mucin synthesis)

Cell proliferation

Activates mTOR phosphorylation

Immunity

Precursor of glutathione in the intestine

Amino acids and microbiota

Effect of Tryptophan inclusion in cecal microbiota of post weaning pigs

Effect of Glutamate and Glutamine inclusion in faecal microbiota of post weaning pigs

Comparison	baseMean	log2FoldC hange ²	lfcSE ³	P value ⁴	P adj⁵	Таха
Genus level						
100Glu vs	19.62	-21.65	2.78	<0.0001	<0.0001	Mogibacterium
CO	9.07	-21.07	5.28	<0.0002	0.007	Selenomonas
	34.79	-20.86	3.03	<0.0007	<0.0001	Fusobacterium
100Gln vs CO						UBA1819, Family
	8.33	-21.00	3.12	<0.0008	<0.0001	Ruminococcaceae

Luise et al., Scientific Reports, 12(1), 14533.

The effect of AAs supplementation as microbial modulators is still poorly studied.

However, some studies suggested that **glutamine**, **glutamate**, **tryptophan and arginine** can modulate the commensal bacterial profile of pigs, and contribute to the production of bioactive compounds including precursors for the production of the main SCFAs (isobutyrate, isovalerate, 2-methylbutyrate), indolic compounds (derived from tryptophan metabolism) and amines

Liang et al., (2018). Frontiers in Microbiology, 9, 1736.

Considerations

- Early-weaning represent a multi factorial stress that in certain conditions significantly impair the gut health
- Compared to the antibiotic, that exert an antimicrobial effect, ZnO plays a multi layer role in prevent or restore the gut health impairment
- Feed additives, Feed material and Veterinary medicines represent part of the strategy to reduce the use of pharmacological dose of ZnO
- □ The 1:1 replacement of the therapeutic dose of the ZnO is not plausible
- The feeding strategies do not exert the same effect in all the conditions (e.g. sanitary status), important to understand the mechanism of action of the bioactive compounds to properly apply in target farms to maximize the results and save money.
- Revision of nutrient requirements to cope the physiological needs in post
 ZnO and post- antibiotic era is central

Nutri Førum 23 ÅBRIL

Diana Luise, Federico Correa, Paolo Trevisi

Department of Agricultural and Food Sciences (DISTAL) Viale G. Fanin 46, Bologna Alma Mater Studiorum - University of Bologna

diana.luise2@unibo.it

