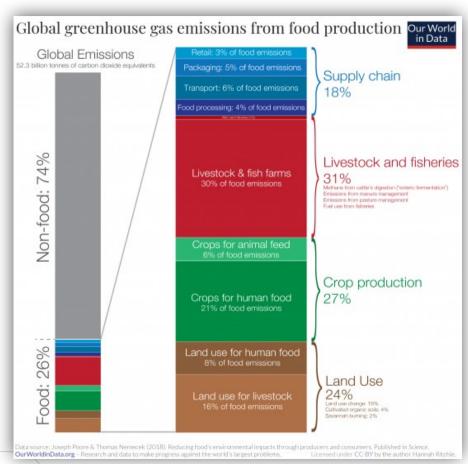
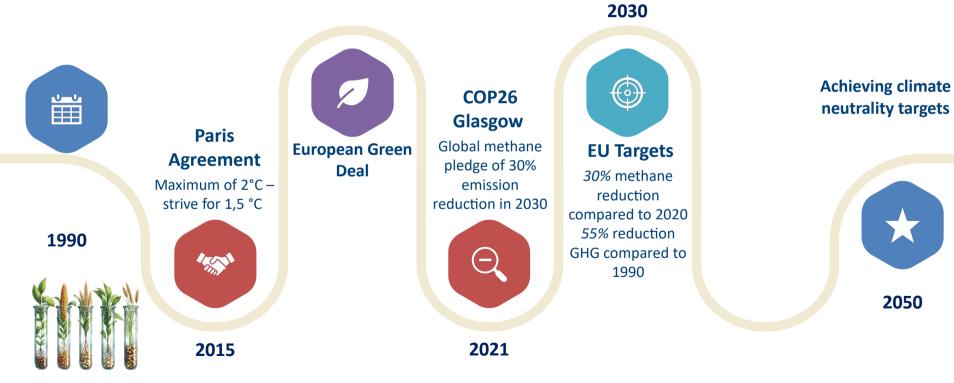


Lifecycle Assessment and carbon footprint calculation of Animal Feed


George Tice, Scientific, Policy and Regulatory Consultant, Wicklow, Ireland

Topics

- 1. The requirement for Carbon footprint measurement and reduction for Feed Producers and the Livestock Industry
- 2. What is Lifecycle assessment and how is it calculated?
- 3. How is the carbon footprint of Compound feed calculated?


The Sustainability of Food

- The food system plays a crucial role in the context of climate change & measures to reduce emissions.
- Livestock & fisheries account for 31% of food emissions.

The International Context – Global Climate Neutrality goals

NutriForum

Scope 3 (Supply Chain) Emission Targets of Retailers

Retailer	Ahold Delhaize	TESCO	Carrefour	
Target around 2030	37% (2030)	39% _{FLAG*} (2032 vs. 2019)	30% (2030 vs. 2019)	75% of suppliers join SBTi** in 2026
Net zero target	2050	2050		

FLAG= absolute reduction of scope 3 on forest, land, agriculture

.

** SBTi=Science based target initiative to reduce CO2 based on the Paris agreements.

Data from company's website - open source

"4.2% is the annual reduction required by SBTi for a 1.5°C trajectory alignment."

https://sciencebasedtargets.org/reports/sbti-progress-report-2021

Albert Heijn Upgrades CO2 Emission Reduction Target

November 25, 2022 6:58 AM

"Dutch retailer <u>Albert Heijn</u> has <u>announced</u> that it is upgrading its target of reducing <u>CO2 emissions</u> in its value chain (scope 3) from 15% to 45% by 2030 compared to 2018.

Albert Heijn has already mapped the exact carbon emissions in its <u>poultry</u> and pork supply chains."

https://www.esmmagazine.com/retail/albert-heijn-upgrades-co2-emission-reduction-target-227045

The legislative requirements emerging from the European Green Deal and the need to for Agrifood companies to MAP and REDUCE emissions

<u>Corporate Sustainability Reporting Directive</u>

Companies in the food supply chain must report carbon footprint from 2025/2026

<u>The Industrial Emissions Directive</u>

Will require Intensive pig and poultry units to measure carbon footprint/emissions from 2027/2028

Green Claims Initiative

Carbon footprint calculations and declarations required for making claims

 <u>Sustainable Food Systems Framework</u> will be proposed by EU Commission end of 2023 – legislative timelines to be confirmed

Sustainability labelling of food products Common standards for agrifood products

The importance of Feed

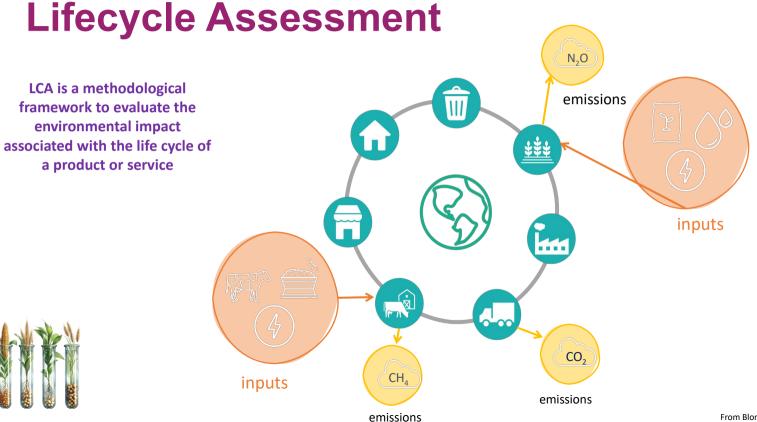
- 1kg of Chicken has carbon footprint = ~3.3kgCO2eq
- 1kg of compound feed has a carbon footprint = ~1.5kgCO2eq
- Compound feed contributes ~70% of the total carbon footprint of chicken sold at the supermarket
- ...so any reduction in footprint of compound feed has a significant impact on the final meat product

Environmental implications of alternative pork and broiler production systems in the US, China, Brazil and the EU. A report by Blonk Sustainability Consultants on behalf of World Animal Protection. 2022.https://blonksustainability.nl/news-and-publications/publications

Hickmann FMW, Andretta I, Létourneau-Montminy M-P, Remus A, Galli GM, Vittori J and Kipper M (2021). Mannanase Supplementation as an Eco-Friendly Feed Strategy to Reduce the Environmental Impacts of Pig and Poultry Feeding Programs. Front. Vet. Sci. 8:732253.

The European Feed and Livestock Industry Response

SUSTAINABILITY CHARTER


OUR ROADMAP TO A SUSTAINABLE FUTURE FOR THE EUROPEAN POULTRY MEAT SECTOR

Topics

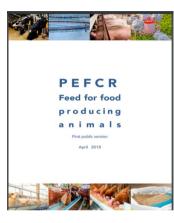
- 1. The requirement for Carbon footprint measurement and reduction for Feed Producers and the Livestock Industry
- 2. What is Lifecycle assessment and how is it calculated?
- 3. How is the carbon footprint of Compound feed calculated?

Strengths of Life Cycle Assessment

Quantifies all inputs and outputs of material flows

Trustworthy and sound basis for sustainability claims

Performed according to international guidelines and using credible, validated data


Rules for Measuring and Reporting Carbon Footprint of Feed and Feed Additives

- Product Environmental Footprint Category Rules (PEFCR) for Animal feed:
 - Published by the European Commission
- FAO LEAP Guidelines for Life Cycle Assessment of Feed Additives (2020):
 - Developed by the Food and Agriculture Organization (FAO)
- ISO 14040 and 14044:
 - International Standards for Life Cycle Assessment (LCA)
- ISO/TS 14067 Greenhouse gases: Carbon footprint of products, Requirements and guidelines for quantification and communication

Environmental performance of feed additives in livestock supply chains support account

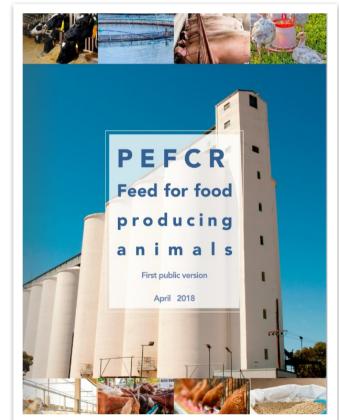
et to Group and Scatter Tric Streams (Group: Tric georgatics (Heigheral core) ISO Stare (or Heistar) (Constant) and All Star Steps our (once only: copies and networks prohibited INTERNATIONAL ISO STANDARD 1404

First ed

Environmental management — Life cycl assessment — Requirements and guidelines

Management environnemental — Analyse du cycle de vie — Exigene et lignes directrices

Product Environmental Category Rules – the European Commission


Consistent and specific set of rules to calculate the environmental impact of a product category

Product Environmental Footprint (PEF) FOR FEED

PEFCR - Feed for food producing animals (fefacfeedpefcr.eu)

Table of contents

EFC	R Fee	ed for food-producing animals	
1	List	of tables	
2	List	of figures	
3	Acro	nyms	
4	Defi	nitions	
5	Intro	oduction	1
6	Gen	eral information about the PEFCR	:
	6.1	Technical secretariat	:
	6.2	Consultations and stakeholders	1
		Review panel and review requirements	-
		Review statement	
	6.5	Geographic validity	3
		Language	:
	6.7	Conformance to other documents	1
7	PEF	CR scope	:
	7.1	Product classification	1
		Representative product	
	7.3	Functional unit and reference flow	
	7.4	System boundary	1
	7.5	EF impact assessment	1
	7.6	Limitations	:
		7.6.1 Assumptions	
		7.6.2 PEFCR Limitations	
		7.6.3 Comparison of cradle to gate feed PEF profiles	:
8	Mos	t relevant impact categories, life cylce stages and processes	1
	8.1	Most relevant impact categories	1
	8.2	Most relevant life cycle stages	1
	8.3	Most relevant processes	
9	Life	cycle inventory	
	9.1	List of mandatory company-specific data	
		9.1.1 List of feed ingredients	
		9.1.2 Nutritional analysis data	

ž

Q

	9.1.3 Energy consumption in feed mill operations	48
	9.1.4 Outbound transport	49
9.2	List of processes expected to run by the company	50
9.3	Data gaps	51
	9.3.1 Data gaps on mandatory company-specific data	51
	9.3.2 Data gaps on secondary datasets	52
9.4	Data quality requirements	53
	9.4.1 Company specific datasets	54
9.5	Data needs matrix (DNM)	60
	9.5.1 Processes in situation 1	62
	9.5.2 Processes in situation 2	62
	9.5.3 Processes in situation 3	64
9.6	Which datasets to use?	64
9.7	How to calculate the average DQR of the study	66
9.8	Allocation rules	67
9.9	Electricity modelling	68
9.10	Climate change modelling	71
9.11	End of life modelling for packaging materials	74
10 Life o	cycle stages	79
10.1	Raw material acquisition and processing (i.e. production of feed ingre-	dients)
		79
	10.1.1 Cultivation of plant-based feed ingredients	79
	10.1.2 Production of animal-based feed ingredients	81
	10.1.3 Production of other types of feed ingredients	81
	10.1.4 Processing of feed ingredients	82
	10.1.5 Packaging production	82
	10.1.6 Inbound transport	83
10.2	Agricultural modelling	85
	10.2.1 Handling multi-functional processes	85
	10.2.2 Crop type specific and country -region-or climate specific data	85
	10.2.3 Averaging data	85
	10.2.4 Crop protection products	86
	10.2.5 Fertilisers	86
	10.2.6 Heavy metal emissions	87
	10.2.7 Rice cultivation	87
	10.2.8 Peat soils	88
	10.2.9 Other activities	88
10.3	Manufacturing	88
10.4	Distribution stage	89

Ð

₽

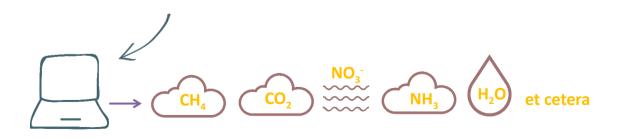
Steps of an LCA

From Blonk Sustainability Consultants

Terminology

Inventory analysis

Steps of an LCA


Terminology

Impact assessment

Steps of an LCA

• Translate inventory table into impact indicator results

Interpretation

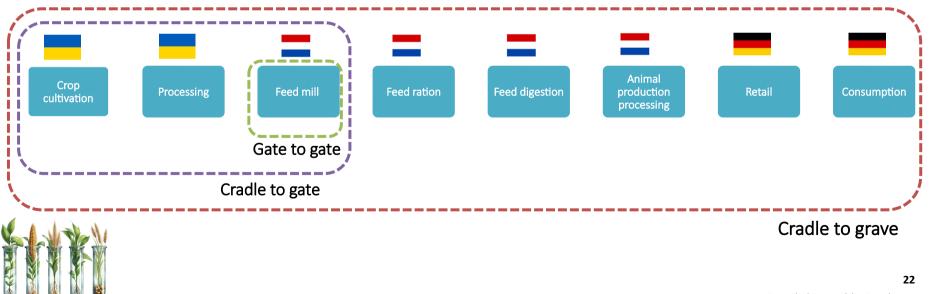
Steps of an LCA

Interpretation

- Consistency check
- Completeness check
- Contribution analysis
- Sensitivity analysis
- Discussion & conclusions

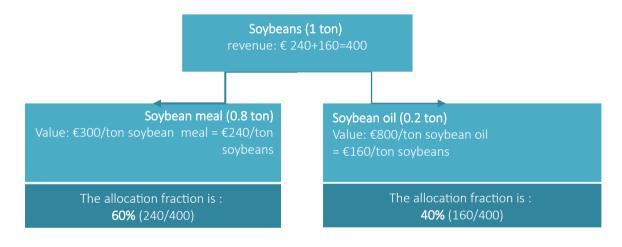
Terminology

Environmental impact categories


- With LCA different environmental impacts are measured: eg
 - Global Warming: kg CO2 eq
 - Water: m3
 - Terrestial Acidification: KgSO2eq.
 - Freshwater Europhication: KgP equivalent
 - Marine Eutrophication: kgN eq
 - Particlulate matter: kgPM2.5eq
 - Ozone depletion: kgCFC eq

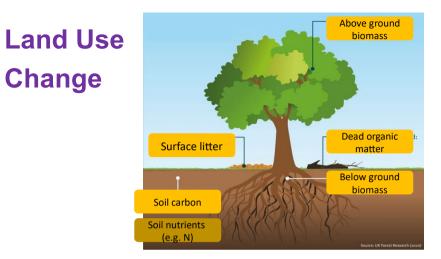
- There are different impact assessment methods available for calculating environmental impact, e.g.:
 - <u>ReCiPe method</u>: 18 impact categories
 - EF 3.1 16 categories

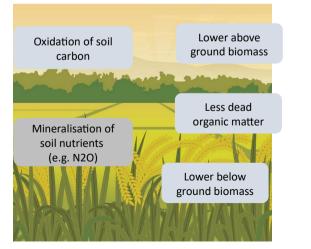
System boundaries


The system boundaries define which parts of the life cycle and which processes belong to the analysed system.

Terminology

Impact allocation – example of Soyabean meal, Economic allocation

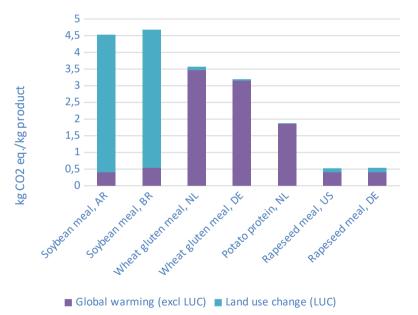




Other options are **Mass** and **Energy** allocation

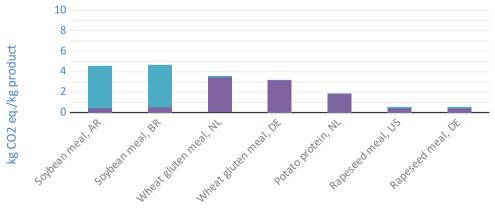
From Blonk Sustainability Consultants

Terminology



Land Use Change

- Land use change is the change in the purpose for which land is being used by humans.
- Reported in kg CO₂ eq. as part of climate change impact
- LUC should be **reported separately**, because of the potential great impact on the results


Climate change

Functional unit

The functional unit qualitatively and quantitatively describes the function(s) and duration of the product

- For example
 - 1 kg of soyabean meal
 - 1 kg FPCM (fat and protein corrected milk) produced in the UK
 - 1 tonne of Compound feed

Overview databases used for LCA analysis

- Feed database:
 - Agri-footprint
 - Feedprint
 - GFLI
 - Nevedi

- Food database:
 - RIVM
 - AgriBalyse,
 - EF agro food
 - LCA food (DK)

- Background database:
 - Ecoinvent
 - ELCD
 - USLCI
 - EF background

The Global Feed Lifecycle Assessment Institute - GFLI

What is GFLI and its database?

The Global Feed LCA Institute is an independent animal nutrition and food industry non-profit institute with the purpose of:

- developing a publicly available Animal Nutrition Life Cycle Analysis (LCA) database;
 - supporting the meaningful environmental assessment of animal nutrition products; and
- stimulating continuous improvement.

GFLI database

- use data based on a harmonized methodology;
- calculate the environmental footprint of products in a transparent and trustworthy manner; and
- benchmark and make meaningful comparisons.

Makes it possible to produce feed with a lower footprint; resulting also in food products with a lower footprint/kg (farmed fish/pig/poultry).

More on the GFLI

Public database of feed ingredient datasets generated using the LCA methodology.

Ambition to make animal nutrition life cycle analysis more **transparent** and **meaningful** though a **harmonised methodology**.

Aligned with the standards common for this sector:

- FAO/LEAP feed guidelines 2016 (FAO, 2016);
- Feed PEF database methodology 2017 for EF 2.0 (Blonk et al., 2017) and EF 3.0 data (European Commission, 2020);
- Feed PEFCR 2018 (European Commission, 2018a);

FAO/LEAP feed additives guidelines 2020 (FAO/LEAP, 2020)

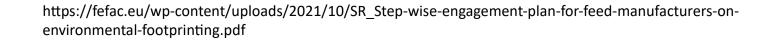
Market Mix data – example from GLFI

- Ingredients sourced in one country may come from a variety of countries,
- Each with a different footprint
- Trade data is accessed and a market mix is assumed to calculate the final footprint
- In GLFI RER suffix is used to refer to "European Sourced" product

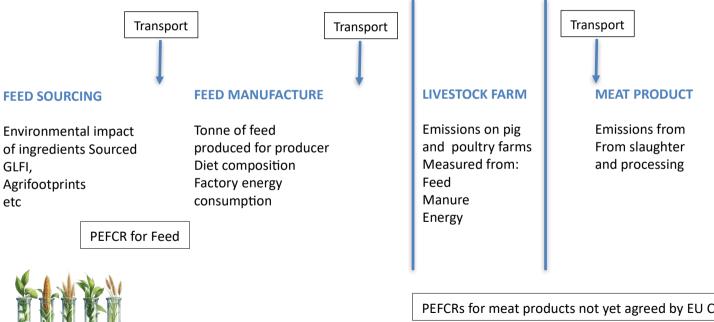
Market mix for	Commodity	Source Country	Percent in mix
Germany	Maize	Germany	62.32%
Germany	Maize	Poland	10.65%
Germany	Maize	Ukraine	9.18%
Germany	Maize	France	8.52%
Germany	Maize	Hungary	5.61%
Germany	Maize	Czechia	1.73%
Germany	Maize	Netherlands	0.83%
Germany	Maize	Russian Federation	0.64%
Germany	Maize	Romania	0.52%

100%

An example data - from GFLI


Product	Unit	Global warming - Excluding LUC & peat(kg CO2 eq / ton product)
Fat from animals, beef, at processing/RER Energy S	ton	26769
Fat from animals, pig, at processing/RER Energy S	ton	17506
Fat from animals, poultry, at processing/RER Energy S	ton	7726
Crude rice bran oil, at processing/CN Energy S	ton	2491
Crude peanut oil (solvent), at processing/IN Energy S	ton	etc
Crude soybean oil (solvent), at processing/IN Energy S	ton	etc

Guidance on Plan Environmental Footprint measurement for feed manufacturers - FEFAC


7 step plan

- Accessing GLFI database
- Reading PEFCR Feed , especially re energy consumption at manufacturing site
- Training and consider use of consultants
- Assess origin of ingredients and transport
- Conduct an LCA study and consider the use of consultants and software to do so
- Consider Soy sourcing

Integration of Carbon footprint calculation into final meat product

PEFCRs for meat products not yet agreed by EU Commission

How can farmers and livestock companies calculate the footprint of the final meat product and provision of that data to food companies and retailers?

Consultancies that combine LA expertise, IT integration and livestock/ meat production understanding, for example

- Opteinics™
- Sustell[™]
- Agrecalc
- Eggbase
-

Then further integration of livestock data into processing and final product data for supply to retailers, for example

- Blonk Sustainability Consultants
- Mondra Coalition
- •

Topics

- 1. The requirement for Carbon footprint measurement and reduction for Feed Producers and the Livestock Industry
- 2. What is Lifecycle assessment and how is it calculated?

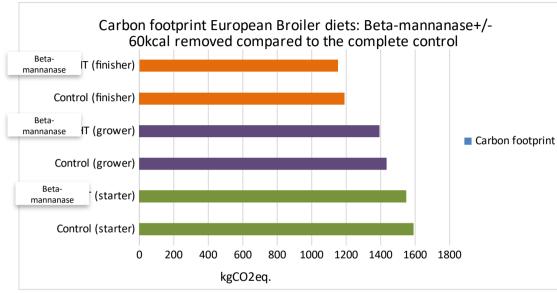
3. How is the carbon footprint of Compound feed calculated?

A worked example of reducing the carbon footprint of compound feed using enzymes

- Beta-mannanase breaks down β-mannans in swine and poultry feed
 - prevents an inflammatory feed induced immune response
 - enabling the reduction in the energy matrix of swine and broiler diets¹.
- Independent validation that there will be no impact on final animal performance from reduction in energy matrix
 - <u>60kcal</u> reduction in matrix for <u>broiler diets</u> and <u>55MJ</u> reduction NE in <u>swine diets</u>²

<u>References</u>

Hickmann FMW, Andretta I, Létourneau-Montminy M-P, Remus A, Galli GM, Vittori J and Kipper M (2021). Mannanase Supplementation as an Eco-Friendly Feed Strategy to Reduce the Environmental Impacts of Pig and Poultry Feeding Programs. Front. Vet. Sci. 8:732253


Study Guidelines

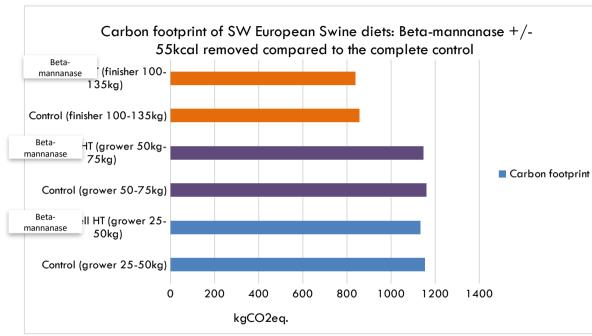
Scope of the LCA – performed by Blonk Consultants

- LCA for the beta-mannanse performed and aligned to FAO LEAP Guidelines for Life Cycle Assessment of Feed Additives (2020) and ISO 14040 and 14044.
- Independent Nutritionists formulated representative broiler and swine diets using least cost formulation software.
- System boundary: cradle-to-feedmill gate;
- Modelled in Simapro in alignment with the Feed PEFCR
- Results calculated with ReCiPe 2016 methodology;
- Functional Unit: 1 tonne feed

Broiler Results per ton feed

Summary:

- In <u>all beta-mannanase</u> diets a small reduction in the global warming impact was found compared to the control.
- The reformulated diets had less calories largely due to a reduction in soybean meal and soybean oil. These ingredients had a high associated LUC impact.
- Reductions in the carbon footprint of the beta- mannanase diets are largely due to a reduction LUC impact.


(1000: EURO BROILER)	Control (starter)	Beta- mannanase (starter)	% reduction	Control (grower)	Beta- mannanase (grower)	% reduction	Control (finisher)	Beta- mannanase (finisher)	% reduction
Carbon footprint	1589	1547	3%	1433	1394	3%	1190	1151	3%
CF excluding LUC	545	538	1%	539	533	1%	519	513	1%
CF LUC only	1045	1009	3%	894	861	4%	671	638	5%

			Percentag	e included			Difference in ingredients			
Ingredient	Dataset from Agrifootprint	EURO BROILER STARTER	EURO BROILER STARTER - with BM	EURO BROILER GROWER	EURO BROILER GROWER with BM	EURO BROILER FINISHER -	EURO BROILER FINISHER- with BM	25-50	50-75	100-135
MAIZE 7.2%	Maize, dried, market mix, at regional storage {RER} Economic, U	40.00	40.00	40.00	40.00	50.00	51 0			5 1.1
MUNILE 7.270	Wheat grain, dried, market mix, at regional	40.00	40.00	40.00	40.00	50.00		Starter	Grower	Finisher
WHEAT 9.5%	storage/RER Economic	16.02	17.18	19.93	21.09	15.89	17.05	1.2	1.2	1.2
SOYA-45.4%	Soybean meal (solvent), market mix, at regional storage {RER} Economic, U	33.97	33.79	27.33	27.15	19.39	19.21	-0.2	-0.2	-0.2
	Sunflower seed meal (solvent), market mix, at							0.0	0.0	0.0
SUNFLOWER MEAL - 38%	regional storage {RER} Economic, U	2.00	2.00	3.00	3.00	4.00	4.00) 0.0	0.0	0.0
RAPE.M '00'-32.5%	Rapeseed meal (solvent), market mix, at regional storage {RER} Economic, U	1.50	1.50	2.50	2.50	4.00	4.00	0.0	0.0	0.0
KATE:M 00-52.576	Crude soybean oil (solvent), at processing/RER	1.50	1.50	2.50	2.50	4.00	4.00			
SBO-soyaoil	Economic S	2.88	1.89	3.97	2.98	3.71	2.72	-1.0	-1.0	-1.0
	Sodium bicarbonate {RER} soda production, solvay									
SODIUM-BICARBONATE	process APOS, S	0.13	0.13	0.09	0.10	0.03	0.04	0.0	0.0	0.0
	Limestone, unprocessed {RoW} limestone quarry							0.0	0.0	0.0
LIMESTONE FLOUR	operation Cut-off, S - Copied from ecoinvent U	1.18	1.19	1.11	1.11	1.03	1.03	3 0.0	0.0	0.0
B-SALT	Economic, U	0.27	0.27	0.28	0.27	0.27	0.27	, 0.0	0.0	0.0
MONO CALCIUM PHOSPHATE	Monocalcium phosphate	0.58	0.57	0.48	0.48	0.41	0.41	0.0	0.0	0.0
L-LYSINE-HCI	Biolys®, 54.6% L-Lysine, at Evonik plant {US} Economic. U	0.34	0.34	0.33	0.33	0.35	0.36	0.0	0.0	0.0
	MetAMINO®, 99% DL-Methionine, at Evonik plant									
DL-METHIONINE	{BE} Economic, U	0.35	0.35	0.28	0.28	0.22	0.22	0.0	0.0	0.0
	ThreAMINO®, 98.5% L-Threonine, at Evonik plant							0.0	0.0	0.0
L-THREONINE	{HU} Economic, U	0.14	0.14	0.11	0.11	0.10	0.10) 0.0	0.0	0.0
L-VALINE	Economic, U	0.08	0.08	0.06	0.06	0.04	0.04	4 0.0	0.0	0.0
	Total minerals, additives, vitamins, at plant {RER}							0.0	0.0	0.0
L-ARGININE	Economic, U	0.04	0.04	0.02	0.02	0.04	0.04	4 0.0	0.0	0.0
PHYTASE 1000 FTU (200g/t)	Enzymes {GLO} market for enzymes APOS, S	0.02	0.02	0.02	0.02	0.02	0.02	0.0	0.0	0.0
HEMICELL XT - mill	Hemicell XT		0.02		0.02		0.02	0.02	0.02	0.02
	Total minerals, additives, vitamins, at plant {RER}							-0.5	-0.5	0.0
VITS & MINS - S/GR	Economic, U	0.50	0.01	0.50	0.01		0.01	0.0	0.0	010
	Total minerals, additives, vitamins, at plant {RER}							0.5	0.5	-0.5
VITS & MINS - FIN	Economic, U		0.50		0.50	0.50				

Swine Results – 1 ton feed, Southwest Europe

Summary:

- These results are compared assuming the same FCR.
- The reformulated diets' carbon footprint impact dropped 1-4% on the baseline, depending on the scenario.
- The reformulated diets had less calories largely due to a reduction in soybean meal and animal fat.
- Reductions in the carbon footprint of the Beta-mannanase diets are largely due to a reduction LUC impact.

	Grower; 25-50kg			Grower	50-75kg		Finisher; 100-135kg			
Northeast Europe	Control	Beta- mannanase	96 reduction	Control	Beta- mannanase	96 reduction	Control	Beta- mannanase	96 reduction	
Carbon footprint	1177	1155	1.9%	1200	1183	1.4%	897	859	4.2%	
CF excluding LUC	573	570	0.4%	580	582	-0.3%	560	552	1.4%	
CF LUC only	604	585	3.2%	619	601	2.9%	337	307	8.8%	

			Pigs 25 to 50 kg	Percenta
Elanco specified ingredient	Dataset from Agrifootprint	Pigs 25 to 50 kg	+BM	Pigs 50 to 75 kg
Barley 10.8 % CP	Barley grain, dried, market mix, at regional storage {RER} Economic, U	14.78	15.98	14.65
Corn (E2012)	Maize, dried, market mix, at regional storage {RER} Economic, U	30.00	30.00	30.00
Wheat 11.2 % CP (E2012)	Wheat grain, dried, market mix, at regional storage {RER} Economic, U	30.00	30.00	30.00
Sunflower 28 CP (F2012)	Sunflower seed, market mix, at regional storage {RER} Economic, U			
	Soybean meal (solvent), market mix, at regional storage {RER} Economic, U	21.67	21.39	22.22
Animal mixed fat (F2012)	Blonk process mix	1.29	0.27	1.26
Calcium carbonato (E2012)	Calcium carbonate, precipitated {RER} calcium carbonate production, precipitated APOS, S	0.74	0.77	0.75
Monocalcium phosphate	Monocalcium phosphate	0.45	0.50	0.28
Salt (E2012)	Sodium chloride, powder {RER} production APOS, S	0.44	0.44	0.44
	MetAMINO®, 99% DL-Methionine, at Evonik plant {BE} Economic, U	0.04	0.04	0.01
L-LYSINE HCL (F2012)	Biolys®, 54.6% L-Lysine, at Evonik plant {US} Economic, U	0.23	0.24	0.09
L-THREONINE (E2012)	ThreAMINO®, 98.5% L-Threonine, at Evonik plant {HU} Economic, U	0.06	0.06	
Natuphos Phytase 500 FTU/kg	Enzymes {GLO} market for enzymes APOS,	0.10	0.10	0.10
Hemicell XT 55 kcal/kg	Hemicell XT		0.01	
Premix for grower	Total minerals, additives, vitamins, at plant {RER} Economic, U	0.20	0.20	0.20

Percentage included

+BM

15.36

30.00

30.00

22.06

0.36

0.88

0.49

0.44

0.01

0.09

0.10

0.01

0.20

Pigs 50 to 75 kg Pigs 100 to 135 Pigs 100 to 135

kg

25.88

30.00

30.00

11.60

0.65

0.72

0.25

0.45

0.00

0.15

0.01

0.10

0.20

Difference in ingredients

50-75

0.7

0.0

0.0

0.0

-0.2

-0.9

0.1

0.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

100-135

5.3

-4.4

0.0

0.0

-0.6

-0.6

0.1

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

25-50

1.2

0.0

0.0

0.0

-0.3

-1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

kg +BM

31.19

25.62

30.00

11.03

0.81

0.40

0.45

0.00

0.16

0.01

0.10

0.01

0.20

Topics

- 1. The requirement for Carbon footprint measurement and reduction for Feed Producers and the Livestock Industry
- 2. What is Lifecycle assessment and how is it calculated?
- 3. How is the carbon footprint of Compound feed calculated?

