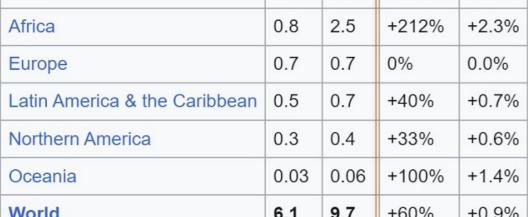

Charoen Pokphand Group committed to sustainable business

In 2022, Charoen
Pokphand Group
established the 2030
Sustainability Strategy,
Goals, and Indicators for
all business groups
around the world.

Goal of 2030 is Carbon Neutrality and 2050 is Net Zero.



Trend and Challenge

Projected regional population (billions)

rojected regional population (billions)					
	2000	2050	Growth	%/yr	
Asia	3.7	5.3	+43%	+0.7%	
Africa	0.8	2.5	+212%	+2.3%	
Europe	0.7	0.7	0%	0.0%	
Latin America & the Caribbean	0.5	0.7	+40%	+0.7%	
Northern America	0.3	0.4	+33%	+0.6%	
Oceania	0.03	0.06	+100%	+1.4%	
World	6.1	9.7	+60%	+0.9%	

These models use trend-based-assumptions showing projected regional growth and chicken meat production


Chicken Meat

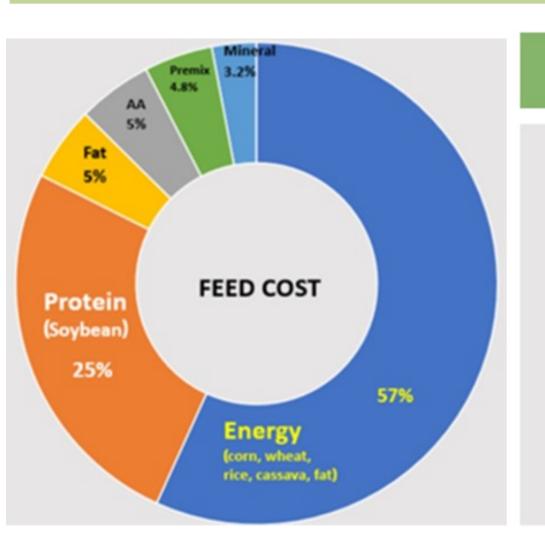
Production (mil.MT)	% of the world	2020	2021	2022	2023	2024f	YoY
United States	21%	20.3	20.4	21.0	21.1	21.2	0.5%
Brazil	15%	13.9	14.5	14.5	14.9	15.1	1.0%
China	13%	14.6	14.7	14.3	14.3	13.9	-3.0%
European Union	11%	11.0	10.8	10.9	11.2	11.2	0.4%
Thailand	3%	3.3	3.2	3.3	3.5	3.5	1.2%
Others	58%	56.9	57.8	58.9	58.6	59.7	1.8%
Total	100%	99.7	101.1	101.8	102.4	103.3	0.9%

Farm and Animal Welfare

Source: European Commission of Animal Welfare

CP Foods pledges to improve free antibiotic meat products

This effort aims to improve animal health and reducing the antibiotics resistance in food products



Sustainable Feeds

Sustainable feeds

Least cost feed formulation, Good performance and friendly with environment

Key Points

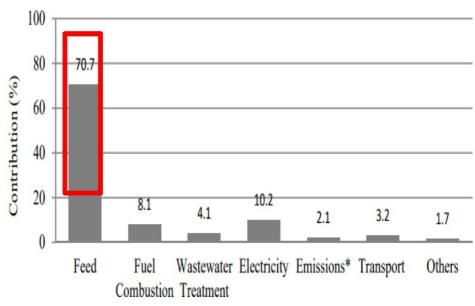
Dietary Energy Sources (COST) = Net Energy

Dietary Protein Sources

(COST) = SID AA basis

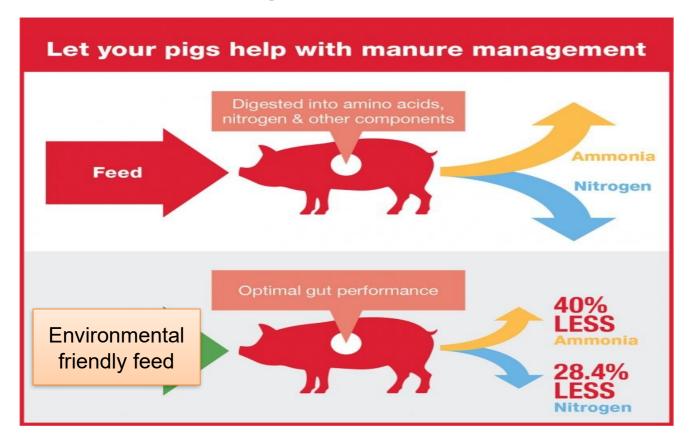
90-95%

(1) Friendly environmental feeds


(2) Herbal Product as feed additive.

Friendly environmental feeds

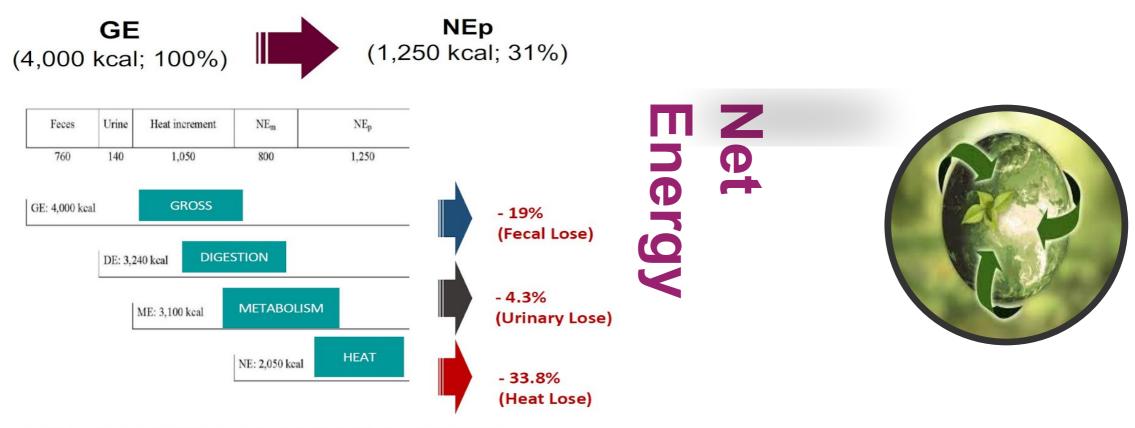
Chicken Feed is the hot spot for GHG emissions


Figure 4. Contribution to GHG emissions from major sources within the processes evaluated in chicken meat production. * Emissions from enteric fermentation and on-farm manure management.

NutriFosum

Feeds can reduce Nitrogen in feces

They can reduce nearly 40 less ammonia and


28.4 % less nitrogen from manure.

Environmental Friendly Feeds

Approximate energy utilization of growing pigs fed a corn-soybean meal-based feeds (Kil, 2008). NE_p = Netenergy for production.

Least Cost Feed Formulation

Growing pig (As fed) 50-75kg	Amount
Corn	77.64
SBM (46% cp)	15.31
Palm oil	2.11
Rice bran (full fat)	1.80
MDCP (P-22%)	0.92
Limestone	0.94
Salt	0.30
DL-Met	0.08
L-Thr	0.14
L-Lys 78%	0.46
Premix	0.25
Total in diet	100
Cost/kg	14.2

Total AA balance		SID AA balance	
Lys/Lys	100	Lys/Lys	100
Met/Lys	31.42	Met/Lys	29.71
Met+Cys/Lys	52.38	Met+Cys/Lys	56.89
Thr/Lys	65.20	Thr/Lys	62.19
Trp/Lys	13.80	Trp/Lys	12.98
Total AA Balance S	TD	SID AA Balance S	TD
Lys/Lys	100	Lys/Lys	100
Met/Lys	28.86	Met/Lys	28.23
Met+Cys/Lys	58.76	Met+Cys/Lys	56.47
Thr/Lys	65.97	Thr/Lys	61.17
Trp/Lys	17.52	Trp/Lys	17.64

		Different%		
GE kcal/kg	3889.50			
DF kcal/kg	3381 25	13.06		
ME kcal/kg	3271.74	3.23		
NE kcal/kg	2543.80	22.24	Total Energy Lose	38.55%
Fot%	5.800			
CP %	13.80			
Lys%	0.965			
SID Lys%	0.888	7.91	SIDLys/total Lys	
Met%	0.303			
SID Met%	0.286	5.43	SIDMet/total Met	
Met+Cys%	0.558			
SID Met+Cys%	0.505	9.42	SIDMet+Cys/total Met+Cys	
Thr%	0.629			
SID Thr%	0.552	12.16	SIDThr/total Thr	
Ca%	0.600		Protein Lose	10%
Total P%	0.519			
Avail. P%	0.285	45.06	Total P/Avail.P	
Ca/Avail.P	2.102			
DEB	141.53			
Crude fiber%	2.896			
NDF%	10.69			
ADF%	3.398	68.21	NDF/ADF	
Lignin%	0.561			
NSPi%	9.758			
Starch%	50.85	88.59	Starch/fat	
Total sugar%	2.788		Second	
Insoluble ash%	0.100			
Moisture%	12.71			
Hemicellulose (NDF-ADF)	7.293			
Cellulose (NDF-Lignin- Hemicellulose)	2.836	Protein	(Lys):Energy	ratio
Total Ash	2.747			
Total	99.39			

GHG Mitigation Potentials in the livestock sector

nature climate change

REVIEW ARTICLE

PUBLISHED ORGANIC DE BANKON DE PART DES PRODUCTIONS DE PRODUCTION DE

Greenhouse gas mitigation potentials in the livestock sector

Mario Hervero¹⁴, Benjamin Henderson², Petr Havlik², Philip K. Thornton¹⁴, Richard T. Conant⁴, Pete Smith², Stefan Winsenius¹⁴, Alexander N. Hristov², Piorre Gerber²⁴, Margaret Gill², Klaus Butterbach-Bahl⁵⁶, Hugo Valin², Tara Garnett¹⁶ and Elke Stehfest¹⁶

The Section's section copports about 1,3 billion produces and retailors, and contributes 40-50% of agricultural SSR, the colorance that between 1995 and 2005, the Section's accounts for up to half of the technical edigation potential of the agriculture, Security and land-one section, through management agriculture, and through retaining the state of the agriculture, agriculture, and through retaining the state of the section of the section of the agriculture and the agriculture of the agriculture of the section of the section

Yes brownisch nector in large. Throwly bellions animals reader our of 16% of the terrestrial land was for gracing, one-third of plobal fundamental in send in provide direct limitificand and economic bandite. to of least 1.3 billion producers and retailers*. As an accommon writeity, browinsk contributes up to 1894 of agricultural GEO globals*. The linesteck autor is also very dynamic. Global per capita conexception of Denstock products has cases than deadled in the past 40 years' formulag bursan population, incomes and orbanisation we projected to drive increases in the consumption of such and ment area the most 20 years, at least at proviously observed exter?, with most of the growth projected to accor in the developing world. In response to these demand transle, the sector has managed to sigeducatly increase production. Best and enth production have more then dealthed over the past 40 years and managestric production. type and product has green in place by a factor of live or most. Intensification of production, in terms of increased broateds and/ or cosp-productivity, but played a pivotal role in raising the extent per unit of hard and annual. For example, in the UNA, 60% more malls in proclaimed more than in the 1990s with about 1976 forces years". Ollough introdication his occurred in some regions, agricultural land expansion has also been an important component of production provide in places such as Africa and Latin America, These tends, if continued, could drive equificant increases in generalmen gas (CDC) previouses, defendation, loss of bindirecesty and other regative impacts on the continuously.

The translated resolve is large. Towards follow assistants reader are of 29% of the translated stand state for granting, sear-thord of plotted state are in development area in directed to producing united first? and 15% of south is south to producing united first? and 15% of south is south to resolve the producing united first? and 15% of south is south to resolve the producing and relative to the south to south to resolve the translate of the south towards and relative towards to south to the producing and the south towards and the south towards and towards t

Mitigation potentials were ordered for the following 10 suchaical and management interventions; (s) interestication and the associated structural charges of broateck systems; and (si) moderation of demand for financia, products.

We estimate that these options have the technical potential to mitigate a substantial proportion of estimates from broades. However, their accessors mitigation potential may be for smaller than to adoption bention and cents of the technical options, undeservationed in the broadest states and a lank of effective policies or political will be presenting healthy leads of consumption of limstent products in the data of developed and developing country populations. The one-closely with a discussion on consumts much too supervising the healthday and adoption of excipation options in limmeteric systems to have GPG one-testors without hampuring und commence and limitations.

**Contractional Security and Industrial Research Organization (CURS), RDS Contract, Nacl, 31 Lates, Student Lates, Contract, Nacl, Annual Programs of Contract Research Programs, International Security (CURS) Research Programs on Contract Change, Springer, and Security (CURS) Research Programs on Contract Changes, Springer, and Security (CURS), Student Security (CURS), Security (Security, Security, Security), Part Cubins, Cubiconia (SCO) - FIRE, M.S. Scottonia Read Security, Advanced Contract, Security of Security, Security, Security of Security, Security (Security), Sec

Mitigation potentials

- 1. Technical and management interventions
 - Use of feed additives
 - Improve feed digestibility
 - Soil carbon sequestration in grasslands
- 2. Increased livestock and crop/pasture productivity
 - Animal productivity and health
 - Avoid deforestation due to intensification
- 3. Moderation of demand for livestock products
 - The production of beef protein requires about 50 times more land than the production of vegetable proteins, and GHG emissions excluding land-use change are about 100 times higher.
 - The 2030 mitigation potentials for animal GHG emissions at unit costs of US\$20, US\$50 and US\$100 per tCO₂e were estimated to be 175, 200 and 225 MtCO₂ yt-1, respectively

Herbal product as Feed additives

Feed Additives

Use of Methane Inhibitors

Use of Herbal extracts

Use of Bee propolis extract

Use of Saponins and Yeast

Use of Ionophores

Use of Organic acids

Use of Exogenous enzymes

Use of Nanoparticles

Use of Algae

Phytogenic Feed Additive (Supplement)

Phytogenics are a group of natural and nonantibiotic growth promoters used as feed additives, contain a large number of substances with antimicrobial, antiviral and antioxidant activities.

The potential benefits of using phytogenics in poultry nutrition are: increased deed intake, stimulation of digestion, increased growth performance, reduced incidence if disease, improved reproductive parameters, improved feed efficiency, increased profitability and reducing poultry house emissions.

Preference for Phytogenics without chemicals

	Essential Oils/Extracts	NR-SBP*
* Process	Solvent Extraction or Distillation	No such process
Active compounds	2 to 3	Many
Mode of Action	Single Target	Multiple Target
Cost	Very High	Low
CFP	Very High	Very Low

*NR-SBP, which is a registered Trademark concept of Natural Remedies Pvt Ltd. It constitutes of a category of Phytogenics which is different from Essential oils & extracts

Relative Feed additive (supplement) to sustainable feed

Feed supplement has 2 effects to sustainability and environment.

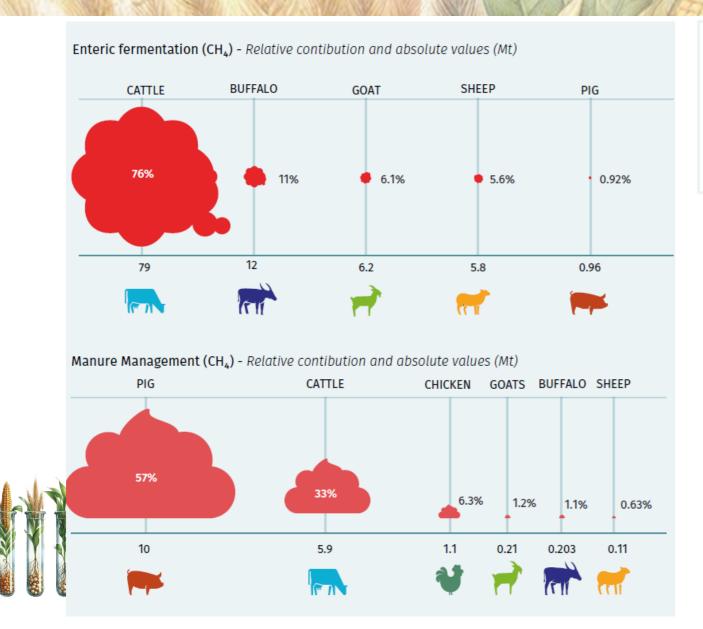
- Direct effect when NR-SBP replace synthetic choline chloride can reduce carbon emissions.
- Performance Improvement effect uses for antioxidant, antistress and adaptogenic.

Impact on Carbon Footprint due to Greener alternative of choline chloride

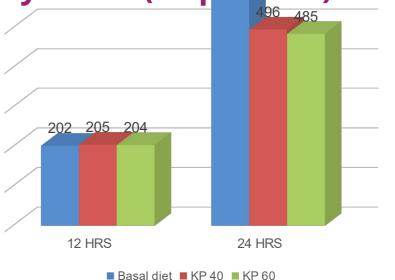
Impact Category	Unit	NR-SBP Natural choline	Synthetic Choline Chloride-60%
Global Warming Potential	kg CO₂ eq	579	1,020
Freshwater Eutrophication	kg P eq	0.144	0.204
Terrestrial Acidification	kg SO₂ eq	2.45	3.41
Mineral resource scarcity	kg Cu eq	0.495	34.7
Water consumption	m³	4.06	2.43
Freshwater ecotoxicity	kg 1,4-DCB	8.69	18.2
Human carcinogenic toxicity	kg 1,4-DCB	5.27	244

CFP Reduction by replacing Choline Chloride with NR-SBP

NR-SBP Green choline Carbon Footprint is 0.579kg CO₂e per kg


C.P Group Has Contributed Towards
Reducing

56,805,220 Kg CO₂e in 2023


(Carbon Dioxide Equivalent)
By Using NR-SBP Green choline for
complete Choline chloride
replacement

Methane reduction by NRSBP

. AgriculturalCH4 emissions predominately stem from livestock (78 percent), followed by rice production systems (22 percent).

NR-SBP Green choline reduced

Methane production by 20% in 48 hrsource:RUSITEC-TANUVAS Kolin Plus

Natural adaptogen and defence

1. Emblica officinalis

Emblica officinalis fruit is listed as feed material in the Fe Material Register (ID 002004) in dried and powdered form.

2. Ocimum sanctum

Ocimum sanctum is listed as feed material in the Feed Material Register (ID 001476) as crude herb, dried and powdered.

3. Withania somnifera

Withania somnifera is listed as feed material in the Feed Material Register (ID 001480) as crude herb, dried and powdered.

NR-SBP cortisol reduction

NR-SBP played a pivotal role in reducing stress & aggressiveness in Swine.

NR - Adaptogen able to reduce 50% cortisol level in 4.8 million pigs in 2023.

Good animal welfare practices not only promote intrinsic animal wellbeing but also help to make animals healthier. This is a key element for the safety of the food chain considering the close links between animal welfare, animal health and foodborne diseases, in line with the principles of One Health.

Reference is available on request**

Summary

It is possible to produce sustainable feeds and can achieve Carbon Neutrality and Net Zero. These feeds will be Green feeds which means that we shall increase natural ingredients or herbal feed supplement into feed formulas. While nutritionist control feed formulas by least cost and performance in the same time over nutrients in manure will been controlled.

Special Thanks

- Feed Technology Office, Charoen Pokphand Group for data information.
- Prof. Dr. Chaiyapoom Bunchasak, Department of Animal Science, Faculty of agriculture, Kasetsart University, Bangkok
- ➤ Dr.Rattanavan Mungkung, Associate Professor in Life Cycle Assessment. Founding Director of VGREEN, Faculty of Environment, Kasetsart University. Managing Direct of VGEEN KU Company, Limited.
- Natural Remedies Company, India.

Muchas Gracias Khob Khun Khap

